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ABSTRACT

We present several mesh smoothing schemes based on the concept of optimal Delaunay triangulations. We define the optimal
Delaunay triangulation (ODT) as the triangulation that minimizes the interpolation error among all triangulations with the same
number of vertices. ODTs aim to equidistribute the edge length under a new metric related to the Hessian matrix of the approximated
function. Therefore we define the interpolation error as the mesh quality and move each node to a new location, in its local patch,
that reduces the interpolation error. With several formulas for the interpolation error, we derive a suitable set of mesh smoothers
among which Laplacian smoothing is a special case. The computational cost of proposed new mesh smoothing schemes in the
isotropic case is as low as Laplacian smoothing while the error-based mesh quality is provably improved. Our mesh smoothing
schemes also work well in the anisotropic case.
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1. INTRODUCTION

In this paper, we will derive several, old and new, mesh
smoothing schemes based on optimal Delaunay triangula-
tions. The optimal Delaunay triangulation (ODT) introduced
in [1] is the triangulation that minimizes the interpolation er-
ror among all triangulations with the same number of ver-
tices. By moving a node to a new position, in its local patch,
such that the interpolation error is reduced, we obtain a suit-
able set of mesh smoothers for both isotropic and anisotropic
mesh adaptations.

Many mesh generation methods aim to generate a mesh as
good as possible according to some mesh qualities. In the
context of finite element methods, it is shown that the an-
gles of triangles should remain bounded away from0 andπ
if one wants to control the interpolation error inH1 norm
[2]. Hence certain geometric qualities are defined to exclude
the large and small angles in the triangulation. On the other
hand in order to approximate an anisotropic function, (with
sharp boundary layers or internal layers) long thin elements
can be good for linear approximation if we measure the error
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in Lp norm rather than inH1 norm [3, 4]. It is shown that the
shape of elements should be stretched according to a metric
which is assigned by (a modification of) the Hessian matrix
of the object function [5, 6, 7, 8, 4], and thus when the metric
is highly anisotropic, the desirable mesh may contain large
or small angles. In the meantime, the density of the nodes
should be distributed according to some norm of the deter-
minant of the Hessian matrix. In other words, the volume of
each element under the new metric is almost equidistributed;
see [7, 8, 4] for details.

Inspired by the optimalLp error estimates in [4], we think
the mesh quality is a function dependent concept. There-
fore, we define the overall quality for a triangulation by
‖f − fI‖Lp(Ω), wheref is the function of interest andfI

is the linear interpolant based on the triangulation. We mini-
mize this error-based quality by several local mesh improve-
ments.

There are mainly three types of mesh improvement meth-
ods: (1) refinement or coarsening, (2) edge swapping, and
(3) mesh smoothing. According to our understanding of
the mesh quality, the refinement and the coarsening mainly
try to optimize the mesh density, while edge swapping and
mesh smoothing mainly aim to optimize the shape regular-



ity. In [9], we have developed the edge-based refinement
and coarsening. Our edge-based refinement will automati-
cally result in a conform triangulation and thus save a lot of
work of programing. In [1], we show that the empty circle
criteria is equivalent to the interpolation error criteria when
f(x) = ‖x‖2. The termination of the edge swapping is
trivial since after each iteration the interpolation error is de-
creased. By choosingf of interest, the edge swapping is gen-
eralized to the anisotropic case. We will consider the mesh
smoothing based on ODTs in this paper.

There are mainly two types of smoothing methods, namely
Laplacian smoothing and optimization-based smoothing.
Laplacian smoothing [10], in its simplest form, is to move
each vertex to the arithmetic average of the neighboring
points. It is easy to implement and require a very low
computational cost, but it operates heuristically and does
not guarantee an improvement in the geometric mesh qual-
ities. Thus people proposed an optimization-based smooth-
ing: the vertex is moved so as to optimize some mesh quality
[11, 12, 13]. The price for the guaranteed quality improve-
ment is that the computational time involved is much higher
than that of Laplacian smoothing.

Our mesh smoothing schemes essentially belong to the
optimization-based smoothing. Instead of geometric mesh
qualities, we try to minimize the interpolation error in the
local patch. With several formulas of the interpolation er-
ror, in isotropic case, we could solve the optimization prob-
lem exactly and thus the computational cost is as low as that
of Laplacian smoothing, while the error-based mesh quality
is guaranteed to be improved. If we changef(x) = ‖x‖2

to a general function or a metric, we get anisotropic mesh
smoothing schemes which are useful in the mesh adaptation
for solving partial differential equations [14, 4]. Of course,
the computational cost in the anisotropic case is a little bit
higher.

The rest of this paper is organized as follows: in Section
2, we define the error-based and metric-based mesh quali-
ties, introduce the concept of optimal Delaunay triangula-
tions and derive formulas for the error-based mesh quality.
In Section 3, we introduce centroid Voronoi tessellations as
the dual of ODTs. In Section 4 we present several mesh
smoothing schemes by considering the optimization of the
interpolation error. We finally report some numerical exper-
iments in two dimensions in Section 5 to show the efficiency
of our mesh smoothing schemes.

2. OPTIMAL DELAUNAY
TRIANGULATIONS

The Delaunay triangulation (DT) of a finite set of pointsS,
one of the most commonly used unstructured triangulations,
can be defined by the empty sphere property: no vertices inS
are inside the circumsphere of any simplex in the triangula-
tion. There are many optimality characterizations for Delau-
nay triangulation [15], among which the most well known is

that in two dimensions it maximizes the minimum angle of
triangles in the triangulation [16]. In [1], we characterized
the Delaunay triangulation from a function approximation
point of view.

Let us denoteQ(T , f, p) = ‖f − fI,T ‖Lp(Ω), where
fI,T (x) is the linear interpolation off based on a triangula-
tion T of a domainΩ ⊂ Rn. Let Ω be the convex hull ofS
andPS be the set of all triangulations ofΩ whose vertices
are points inS. We have shown in [1] that

Q(DT, ‖x‖2, p) = min
T ∈PS

Q(T , ‖x‖2, p), (1)

for 1 ≤ p ≤ ∞, which is a generalization of previous
work [6, 3, 17] to higher dimensions. Delaunay triangula-
tion is therefore characterized as the optimal triangulation
for piecewise linear interpolation to isotropic function‖x‖2

for a given point set in the sense of minimizing the interpo-
lation error inLp(1 ≤ p ≤ ∞) norm. For a more gen-
eral function, a function-dependent Delaunay triangulation
is then defined to be an optimal triangulation that minimizes
the interpolation error for this function and its construction
can be obtained by a simple lifting and projection procedure.

The optimal Delaunay triangulation (ODT) introduced in [1]
minimizes the interpolation error among all triangulations
with the same number of vertices. LetPN stand for the set
of all triangulations with at mostN vertices.T ∗ ∈ PN is an
optimal Delaunay triangulation if

Q(T ∗, f, p) = inf
T ∈PN

Q(T , f, p), (2)

for some1 ≤ p ≤ ∞. Such a function-dependent optimal
Delaunay triangulation is proved to exist for any given con-
vex continuous function [1].

Furthermore, we have the following asymptotic lower bound
for strictly convex functions [4]:

lim inf
N→∞

N2/nQ(TN , f, p)

≥ LCn,p‖ n
p

det(∇2f)‖
L

pn
2p+n (Ω̄)

,

whereLCn,p is a constant only depending onn andp. The
equality holds if and only if all edges are asymptotic equal
under the metric

Hp = (det∇2f)
− 1

2p+n∇2f. (3)

Whenf(x) = ‖x‖2, Hp is the Euclidean metric and the
equality holds if all edge lengths of the triangulation are
equal. InR2, the optimal one consists of equilateral triangles
which is the ideal case for many mesh adaptation schemes.
By choosingf of interest, we can obtain anisotropic meshes
by minimizing the interpolation error. We, thus, consider
mesh adaptation techniques as optimization methods to min-
imize the interpolation error and define the interpolation er-
ror as our mesh quality. It is worthy noting that Berzins [18]
gave a solution dependent mesh quality and Bank and Smith
[11] also derived the distortion quality from error point of



view. More recently, Shewchuk [19] also looked at the mesh
quality from the interpolation point of view.

Definition. SupposeΩ is a domain inRn with triangulation
T , f ∈ C1(Ω̄), fI the piecewise linear and global continuous
interpolation off based onT andp, 1 ≤ p ≤ ∞, we define
error-based mesh qualityQ(T , f, p) as

Q(T , f, p) = ‖f − fI‖Lp(Ω).

For a quadratic convex functionf and an integerp ≥ 1, it
was shown in [4] that

|τ |Hp(

nX
i,j,i<j

d2
τij ,Hp

)p h Q(τ, f, p),

wheredτij ,Hp and|τ |Hp are the edge length and the volume
of τ under the metricHp given in (3), respectively.A h
B means there exist two constantC1, C2 such thatC1A ≤
B ≤ C2A.

We will derive several formulas ofQ(T , f, 1) for later use.
The following lemma can be found in [20, 4].

Lemma 1. For a convex quadratic functionf

Q(τ, f, 1) =
|τ |

2(n + 2)(n + 1)

nX
i,j

‖xi − xj‖2
∇2f ,

where‖v‖∇2f = vT∇2fv.

In particular,f(x) = ‖x‖2 corresponds to the Euclidean
metric. By Lemma 1 and the inequality between the total
edge length and the volume of a simplex, we see

Q(τ, ‖x‖2, 1) ≥ Cn|τ |1+2/n (4)

and the equality holds if and only ifτ is equilateral. In (4),
Cn is a constant only depending on the dimensionn and it
can be calculated by taking an equilateral simplexτ . Thus
the distortion metric [11, 18] for a simplex can be defined by
the following ratio (or its reciprocal)

Q(τ, ‖x‖2, 1)

Cn|τ |1+2/n
=

P
d2

i,j

Cn|τ |2/n
,

whereCn is used to normalize the quality, and the opti-
mization of the distortion metric will lead to equilateral sim-
plexes. Lemma 1 shows the relation between the distortion
metric and the interpolation error. We will look at the inter-
polation error and optimize it directly.

With Lemma 1, we get an interesting formula for our error-
based mesh quality.

Theorem 1.For a convex quadratic functionf

Q(T , f, 1) =
1

n + 1

NX
i=1

Z
Ωi

‖x− xi‖2
∇2fdx. (5)

Proof. Let {λi(x)}n+1
i=1 be the barycenter coordinate ofx in

the simplexτ . Thenx =
Pn+1

i=1 λixi and

n+1X
k=1

Z
τ

‖x− xk‖2
∇2f

=

n+1X
i,j,k=1

Z
τ

λiλj(xi − xk)T∇2f(xj − xk)

=
|τ |

(n + 2)(n + 1)

n+1X
i,j,k=1

(xi − xk)T∇2f(xj − xk)

=
n + 1

2

|τ |
(n + 2)(n + 1)

n+1X
i,j

‖xi − xj‖2
∇2f

= (n + 1)

Z
τ

|fI(x)− f(x)|.

The last equality follows from Lemma 1. The third one is
obtained by summing up the following basic identity:

‖xi − xj‖2
∇2f = ‖xi − xk‖2

∇2f + ‖xj − xk‖2
∇2f

−2(xi − xk)T∇2f(xj − xk).

Noting that

NEX
i=1

n+1X
k=1

Z
τi

‖x− xτ,k‖2
∇2f =

NX
i=1

Z
Ωi

‖x− xi‖2
∇2f ,

we get the result. HereNE is the number of elements in the
triangulation. Q.E.D.

This formula motivates a natural definition of a metric-based
mesh quality.

Definition. For a given triangulationT and metricG, we
define a metric-based mesh qualityQ(T , G, 1) as

Q(T , G, 1) =
1

n + 1

NX
i=1

Z
Ωi

‖x− xi‖2
Gdx.

For a convex function we can get another formula which can
be found in our recent work [1]. Since it is the basis of our
mesh smoothing schemes, we present the proof here.

Theorem 2.For a convex functionf ,

Q(T , f, 1) =
1

n + 1

X
xi∈T

f(xi)|Ωi| −
Z

Ω

f(x)dx. (6)

Proof. BecausefI(x) ≥ f(x) in Ω, we get

Q(T , f, 1)

=
X
τ∈T

Z
τ

fI(x)dx−
Z

Ω

f(x)dx

=
1

n + 1

X
τ∈T

 
|τ |

n+1X
k=1

f(xτ,k)

!
−
Z

Ω

f(x)dx

=
1

n + 1

X
xi∈T

f(xi)|Ωi| −
Z

Ω

f(x)dx.



Figure 1: Lifting and Projection of a Delaunay Triangu-
lation and a Voronoi Tessellation in one dimension

Q.E.D.

We conclude this section by considering the geometric
meaning of the interpolation error. To make it clear, let us
introduce some notation first. We identifyRn+1 asRn × R.
A point in Rn+1 can be written as(x, xn+1), wherex ∈ Rn

andxn+1 ∈ R. For a pointx ∈ Rn, we can lift it to the
paraboloid(x, ‖x‖2) living in Rn+1 and denote this lifting
operator as′, namelyx′ = (x, ‖x‖2). For a given point set
S in Rn, we then have a set of pointsS′ in Rn+1 by lifting
points inS to the paraboloid. For the sake of simplicity, in
the sequel we chooseΩ as an inscribed polytope ofBn, the
unit ball in Rn. The graph of functionf(x) = ‖x‖2 is the
paraboloid andf(Bn) ∪ (Bn, 1) bound a convex bodyC.
For a triangulationT , the graph offI and(Ω, 1) will bound
a polytopeP i. SincefI(x) ≥ f(x) andfI(xi) = f(xi),
the polytopeP i can be seen as an inscribed polytope approx-
imation to the convex bodyC. P i is convex if and only if
the underling triangulation is a Delaunay triangulation. Ac-
tually this is a characterization of Delaunay triangulation and
called the lifting method [21]. See Figure 1 for an illustration
in one dimension. From a function approximation point of
view, it is easy to see that the convex polytopeP i is the opti-
mal linear approximation to the paraboloid for a fixed points
set sinceQ(T , f, 1) is nothing but their volume difference.

Optimal Delaunay triangulations with respect to
Q(T , ‖x‖2, 1) is the optimal inscribed polytopeP i ∈ Pi

N

in the sense of minimizing the volume difference, where we
use superscripti to indicate that it is the set of inscribed
polytopes. The optimal inscribed polytope approximation to
a general convex body is also well studied in the literature
(see, for example, Gruber [22]). Note that the graph offI

can be thought as an approximation of the boundary surface
of the convex bodyC. The results and algorithms developed
in the optimal polytope approximation can be applied to
surface mesh generation and simplification. We would like
to point out that in this case the metric should correspond to
the second fundamental form of the surface [23].

3. CENTROID VORONOI
TESSELLATIONS

In this section, we understand the Voronoi tessellations as
circumscribe polytopes approximation of the paraboloid. We
measure the approximation error by the volume difference.
The optimal one is called a centroid Voronoi tessellation
(CVT) and it is, more or less, the dual of an ODT.

We begin with the classic definition of Voronoi tessellations
(or Voronoi diagrams).

Definition. Let Ω be an open set inRn andS = {xi}N
i=1 ⊂

Ω. For anyxi ∈ S, we define the Voronoi region ofxi as

Vi = {x ∈ Ω, s.t.‖x− xi‖ < ‖x− xj‖}.

ThenΩ̄ =
P

V̄i. We call this partitionV aVoronoi tessella-
tion or Voronoi diagramof Ω and points{xi} generators.

If we lift generators to the paraboloid(x, ‖x‖2), we can
characterize the Voronoi tessellation as the vertical projec-
tion of an upper convex envelope of tangential hyperplanes
at those points [24]. Note that the envelope will form a cir-
cumscribed polytopeP c of C. Thus we can understand the
VT as a circumscribe polytope approximation; See Figure 1.
The duality of VT and DT can be understand as the polar
duality [15] of the inscribed and circumscribe polytopes.

Theorem 3.The volume difference betweenP c andC is

D(V, ‖x‖2, 1) :=

NX
i=1

Z
Vi

‖x− xi‖2dx. (7)

Proof. Let {xi}n+1
i=1 be vertices of a simplexτ andTMx′i

the tangential hyperplane of paraboloid atx′i which is

xn+1 = ‖x‖2 − ‖x− xi‖2. (8)

It is clear that the point(xo, ‖xo‖2 − R2) satisfies (8) for
i = 1, 2, ...n + 1, wherexo andR are the center and radius
of the circumscribe sphere ofτ . The vertical projection of
the upper convex envelopeV ′ of TMx′i

is the Voronoi tes-
sellation.

By the construction of VT, we see that the part of boundary
of P c which is projected to Voronoi regionVi is supported
by the tangent hyperplaneTMx′i

. Thus by (8) the difference
of the volume is:

NX
i=1

Z
Vi

`
‖x‖2 − xn+1

´
=

NX
i=1

Z
Vi

‖x− xi‖2dx.

We can generalize this quality with respect to any density
functionρ(x), which is a positive function defined onΩ andR
Ω

ρ(x)dx = 1.

Definition. Let ρ(x) be a density function inΩ. For
a Voronoi tessellationV of Ω corresponding to generators
{xi}N

i=1, we define

D(V, ρ(x), 1) =

NX
i=1

Z
Vi

ρ(x)‖x− xi‖2dx. (9)



A dual concept of the optimal Delaunay triangulations or
the optimal inscribed polytope approximations is the optimal
Voronoi tessellations or the optimal circumscribe polytope
approximations by minimizingD(V∗, ρ(x), 1).

Definition. V∗ is a centroid Voronoi tessellation if and only
if

D(V∗, ρ(x), 1) = min
V∈PN

D(V, ρ(x), 1).

HerePN stands for the set of all Voronoi tessellation with at
mostN generators.

Why is it called centroid Voronoi tessellation? Because for
a CVT, the generatorxi is also the centroid of its Voronoi
regionVi, i.e.

xi =

R
Vi

xρ(x)R
Vi

ρ(x)
.

The proof is very simple. Letxi be the centroid ofVi. For
any pointzi ∈ Vi, we haveZ

Vi

||x− xi||2ρ(x) =

Z
Vi

(x− xi) · (x− zi)ρ(x)

≤ (

Z
Vi

||x− xi||2ρ(x))1/2(

Z
Vi

||x− zi||2ρ(x))1/2.

Thus Z
Vi

||x− xi||2ρ(x) ≤
Z

Vi

||x− zi||2ρ(x).

As we know, VT is the dual of DT. A natural question arises:
is a CVT the dual of an ODT? It is interesting to compare (5)
with (7). The difference of those two quantities mainly lies
in the different decomposition ofΩ. For a VT, it is a partition
of Ω, while for a triangulation it is an overlapping decompo-
sition ofΩ. We conjecture that in the Euclidean metric, they
are the dual of each other asymptotically. Indeed, this con-
jecture is true for one and two dimensions since in both cases
the ODT and CVT for the Euclidean metric are known and
happen to be the dual of each other. It is also true if we mea-
sure the difference inL∞ norm since both of them asymp-
totically coincide with the optimal sphere covering scheme
[20, 25]. But for generalLp norm in dimensionsn ≥ 3, the
answer is not known yet.

For various important and interesting applications of CVTs,
we refer to a nice review of Du et. al. [26]. Nowadays the
theories and algorithms of CVTs are successfully applied to
mesh generation and adaptation [27], both for general sur-
face grid generation [28], anisotropic mesh generation [29]
and mesh optimization in three dimensions [30]. We believe
ODT shall also play an important role in the mesh genera-
tion and adaptation. This paper is to show the application of
ODTs to the mesh smoothing.

4. MESH SMOOTHING SCHEMES

Mesh smoothing is a local algorithm which aims to improve
the mesh quality, mainly the shape regularity, by adjusting

Figure 2: The feasible region in a local patch

the location of a vertexxi in its local patchΩi, which con-
sists of all simplexes containingxi, without changing the
connectivity. To ensure that the moving will not destroy
a valid triangulation, namely non-overlapping or inverted
simplexes generated, we perform an explicit check, which
is necessary when the patch is concave. Several sweeps
through the mesh can be performed to improve the overall
mesh quality. A general mesh smoothing algorithm is listed
below:

General mesh smoothing algorithm
For k=1:step
For i=1:N
x∗ = smoother(xi, Ωi)
If x∗ is acceptable thenxi = x∗

End
End

The key in the mesh smoothing is the smoother. Namely how
to compute the new location by using the information in the
local patch. Because the mesh may contain millions of ver-
tices, it is critical that smoother function is computationally
inexpensive. Laplacian smoothing, the simplest inexpensive
smoother, is to move each vertex to the arithmetic average of
the neighboring points.

Laplacian smoother

x∗ =
1

k

X
xj∈Ωi,xj 6=xi

xj , (10)

wherek is the number of vertices ofΩi. It is low-cost and
works in some heuristic way since it is not directly related to
most geometrical mesh qualities. Later we will derive Lapla-
cian smoother by minimizing our error-based mesh quality.

An optimization-based smoothing has been proposed in
[11, 12, 13]. An objected functionφ(x) is composed by
combining the element qualities in the patch. A typical
choice [13] isφ(x) = min1≤j≤k qj(x), whereqj(x) is the
quality for simplexτj ∈ Ωi. Then one uses the steepest de-
scent optimization or GLP (generalized linear program) [31]
to find the optimal pointx∗.



Optimization-based smoother

x∗ = argmaxx∈Ωi
φ(x). (11)

The domain ofφ(x) is restricted to the feasible regionA,
which is the biggest convex set contained inΩi such that
x ∈ A will not result in overlapping simplexes; see Fig. 2.
The optimization-based smoother is designed to improve the
mesh quality and the theoretical results developed for GLP
ensure that the expected time for one sweep is a linear func-
tion of the problem size [31]. But it is often expensive than
Laplacian smoothing. Numerical comparison can be found
at [32]. It is worthy noting that in two dimensions Zhou
and Shimada [33] proposed an angle-based approach mesh
smoothing that strikes a balance between geometric mesh
quality and computational cost.

All the mesh smoothing schemes we discussed above are de-
signed for isotropic mesh adaptation. For anisotropic mesh
smoothing, the first step is to update our understanding of
mesh quality which we have done in Section 2. We shall de-
velop several mesh smoothers by minimizing the error-based
or the metric-based mesh quality locally, which will be a uni-
fied way to derive isotropic and anisotropic mesh smoothers.

We first consider the isotropic caseQ(Ωi, ‖x‖2, 1) or
Q(Ωi, E, 1), whereE is the identity matrix representing the
Euclidean metric. We replace the vertexxi by anyx ∈ Ωi,
keeping the connectivity, and try to minimize the error lo-
cally as a function ofx.

By Theorem 1, we consider the following local optimization
problem

min
y∈A

Z
Ωi

‖x− y‖2dx.

By the discussion of the CVT, we know that the minimizer
is the centroid ofΩi, namelyx∗ =

R
Ωi

xdx/|Ωi|. Thus we
get the following smoother.

CVT smoother I

x∗ =

P
τ∈Ωi

xτ |τ |
|Ωi|

, (12)

wherexτ is the centroid ofτ , i.e.xτ =
P

xk∈τ xk/(n+1).

If the mesh density is nonuniform, for example, the mesh
around the transition layer will quickly change from a small
size to a much larger size. In order to keep the smoother from
stretching the elements in the high density region out into
the low density region, we have to incorporate the mesh den-
sity function into our mesh quality. Since we still need the
isotropic mesh, we choose the metricρ(x)E. The nonuni-
form function ρ(x) is to control the mesh density, which
aims to equidistribute the error or the volume of element un-
der this metric, while the matrixE is to improve the shape
regularity of elements.

Let us consider the following optimization problem:

min
y∈A

Z
Ωi

‖x− y‖2ρ(x)dx.

Again the minimizer is the centroid ofΩi with respect to the
densityρ(x), namely

x∗ =

R
Ωi

xρ(x)dxR
Ωi

ρ(x)dx
.

We useρτ , the average ofρ over a simplex, to get our second
mesh smoother.

CVT smoother II

x∗ =

P
τ∈Ωi

xτρτ |τ |P
τ∈Ωi

ρτ |τ |
. (13)

What is the right choice of the density functionρτ ? It could
bea priori one. Namely the density is given by the user ac-
cording toa priori information about the function. In prac-
tice, especially when solving partial differential equations,
the density is given bya posteriorierror estimate, which of
course depends on the function and the problem.

A universal choice of the density function is related to the
volume of the element. Recall that the mesh smoothing
mainly takes care of the isotropic property of the mesh. It
is reasonable to assume that after refinement and coarsen-
ing the mesh density is almost equidistributed. Namely the
volumes of elements are almost equal under the metricρτE.
Since |τ |ρτ E = ρ

n/2
τ |τ |, we may chooseρτ = |τ |−n/2.

With this choice, the mesh smoother (13) becomes

x∗ =

P
τ∈Ωi

xτ |τ |1−n/2P
τ∈Ωi

|τ |1−n/2
. (14)

Whenn = 2, the formula (14) is

x∗ =
2

3

P
xj

k
+

1

3
xi.

It is a lumped Laplacian smoothing. This relation shows that
why Laplacian works in some sense. In three dimensions, no
such a relation exists since for a vertexxj of Ωi, the number
of simplexes which containingxj in Ωi is not fixed.(In two
dimensions, this number is two.)

Since ∪iΩi is an overlapping decomposition ofΩ, the
change ofΩi will affect other patches and thus the overall
error will not necessarily be reduced. We shall make use of
the formula ofQ(T , f, 1) in Theorem 2 to minimize the in-
terpolation error directly.

By Theorem 2,

Q(Ωi, f, 1) =
1

n + 1

X
τj∈Ωi

“
|τj(x)|

X
xk∈τj ,xk 6=x

f(xk)
”

+
|Ωi|

n + 1
f(x)−

Z
Ωi

f(x)dx.

Since we only adjust the location ofxi, Ωi is fixed andR
Ωi

f(x)dx is a constant. We only need to minimizeE(x)



Figure 3: Moving a grid point in its local patch

which is defined by the following expressionX
τj∈Ωi

“
|τj(x)|

X
xk∈τj ,xk 6=x

f(xk)
”

+
|Ωi|

n + 1
f(x).

The domain ofE(x) is the feasible regionA. Since there
exists a small neighborhood ofxi in A, A is not empty and
xi is an interior point ofA. If the triangulation is already
optimal , we conclude thatxi is a critical point ofE(x). We
then have the following theorem.

Theorem 4. If the triangulationT is optimal in the sense
of minimizingQ(T , f, 1) for a convex functionf ∈ C1(Ω),
then for an interior vertexxi, we have

∇f(xi) = − 1

|Ωi|
X

τj∈Ωi

“
∇|τj |(x)

X
xk∈τj ,xk 6=xi

f(xk)
”
.

Whenn = 1, Theorem 4 says that if the grid optimize the
interpolation error inL1 norm, it should satisfy

f ′(xi) =
f(xi+1)− f(xi−1)

xi+1 − xi−1
. (15)

We use Figure 3 to illustrate (15). We move the grid point
xi in its local patch[xi−1, xi+1]. It is easy to see that mini-
mizingQ(Ωi, f, 1) is equivalent to maximize the area of the
shadowed triangle. Since the base edge is fixed, it is equiva-
lent to maximizing the height. Thus (15) holds.

In two dimensions, since

|τj |(x, y) =

˛̨̨̨
xj+1 − xj x− xj

yj+1 − yj y − yj

˛̨̨̨
,

we can get a similar formula

fx(xi, yi) =
X

j

ωx
j f(xj , yj),

fy(xi, yi) =
X

j

ωy
j f(xj , yj),

where

ωx
j =

yj+1 − yj−1

|Ωi|
, andωy

j =
xj−1 − xj+1

|Ωi|
.

The significance of Theorem 4 is that we can recover the
derivative exactly from the nodal values of the function if
the triangulation is optimized. With the gradient informa-
tion, we can approximatef by higher degree polynomials or
constructa posteriorierror indicator.

If the triangulation is not optimized, Theorem 4 can be used
to solve the critical point. And the critical point can be used
as the new location for the mesh smoother. Whenf(x) =
xT Hx is a non-degenerate quadratic function, i.e.H is a
n × n nonsingular matrix. We can solve the critical point
exactly and get a mesh smoother based on ODTs.

ODT smoother I

x∗ = −H−1

|Ωi|
X

τj∈Ωi

“
∇|τj(x)|

X
xk∈τj ,xk 6=xi

‖xk‖2
H

”
.

(16)

When the goal of the mesh adaptation is to get a uniform and
shape regular mesh, we choosef(x) = ‖x‖2 and get

x∗ = − 1

2|Ωi|
X

τj∈Ωi

“
∇|τj(x)|

X
xk∈τj ,xk 6=xi

‖xk‖2
”
.

(17)
Comparing with the CVT, Theorem 4 says that for an ODT,
the nodexi is also a kind of center of its local patch. In
general, it is not the centroid of the patch. This is the dif-
ference of the ODT smoother with the CVT smoothers in-
cluding Laplacian smoother. For example, if vertices of the
patch lie on a common sphere, then the optimal location is
the sphere center not the centroid. In deed, since the approx-
imation error only depends on the second derivative,

Q(T , ‖x‖2, p) = Q(T , ‖x− xo‖2, p).

For functionf(x) = ‖x− xo‖2, fI(x) = R2 and

(fI − f)(x) = R2 − ‖x− xo‖2

attains the minimum value atx = xo. As a byproduct, (17)
gives a simple formula to compute the circumcenter of a sim-
plex, which is not easy in high dimensions.

Whenf is a convex quadratic function, the optimization of
interpolation error is a quadratic optimization. After we get
the global critical pointx∗, we can further simplify our opti-
mization problem to be

min
x∈A

‖x− x∗‖2
∇2f . (18)

The problem (18) is to find the projection (under the metric
∇2f ) of x∗ to the convex setA. For the efficiency of algo-
rithm, we only compute the projection when the global min-
imum pointx∗ is not acceptable. The cost of this algorithm
is a little bit higher if we need to compute the projection and
change the topological structure of the mesh. But the over-
all cost for one sweep will not increase too much since it
operates like a smart-Laplacian smoothing [12].

It may happen that the new locationx∗ is on the boundary of
the patch; see Figure 4. For the sake of conformity we need
to connect this hanging point to the related points which will
reduced the error since‖x‖2 is convex. For two dimensional
triangulations, it looks like we perform an edge swapping
after a local smoothing. If the pointx∗ is on the boundary



Figure 4: Moving a point to the element’s boundary

of Ω, we will eliminate an element by moving an interior
point to the boundary. Conversely a point on the bound-
ary can be moved into the interior. Some boundary points,
which are called corner points, are fixed to preserve the ge-
ometric shape of the domain. But we free other boundary
points. This freedom can change the density of points near
the boundary and yield a better mesh since the interpolation
error is reduced after each local adjustment.

For a general functionf , we can use line search to solve the
following optimization problem.

ODT smoother II

x∗ = argminx∈AE(x). (19)

An alternative approach to solve (19) approximately is
to compute an average Hessian matrixHΩi in the local
patch, and using ODT smoother I for the quadratic function
fq(x) := xT HΩix. This approach is successfully applied
in the construction of optimal meshes in [4]. We will in-
clude several pictures in the next section. On those optimal
meshes, the interpolation error attains the optimal conver-
gence rate; see in [4] for details.

5. NUMERICAL EXPERIMENTS

In this section, we shall present several examples to show the
efficiency of our new smoothers in the isotropic grid adapta-
tion as well as the anisotropic case.

The first example is to compare our new smoothers with
Laplacian smoother for the isotropic grid adaptation and
to show the reduction of the interpolation error for those
smoothers. We place20 equally spaced nodes on each edge
of the boundary of square[0, 1] × [0, 1] and361 nodes in
the square. The nodes in the domain are placed randomly
while the nodes on the boundary is equally spaced since in
this example we only move the interior nodes. We use ’de-
launay’ command of the Matlab 6.1 to generate the original
mesh; see Fig 5(a). In this example, the goal of the mesh
smoothing is to get an equilateral mesh. Namely triangles
are almost equilateral and the density is uniform. We imple-
mented Laplacian smoothing, CVT smoothing I and ODT
smoothing I. In one iteration we apply the mesh smoothing
for each node and then do the edge swapping once. We in-
corporate the edge swapping in our mesh smoothing since it
can change the topological structure of the mesh. In prac-
tice, the edge swapping always come with the mesh smooth-
ing. We perform 10 iterations and present meshes obtained
by different smoothers in Figure 5. According to our theory,

(a) Original mesh (b) Laplacian smoother

(c) ODT smoother I (d) CVT smoother I

Figure 5: Comparison of Laplacian smoother, CVT
smoother I and ODT smoother I

Laplaican smoothing is not for the uniform density. Figure
5(b) shows that the triangle size is not uniform. We also test
CVT smoother I and ODT smoother I which are designed
for the uniform density. Both of them get better meshes than
Laplacian smoothing; see Figure 5(c) and 5(d).

In Figure 6, we plot the interpolation error of each mesh
smoother. In this example,f(x) = ‖x‖2. Therefore we
only need to compare

R
Ω

fI(x)dx which can be evaluated
exactly. See the proof of Theorem 2. The initial interpola-
tion error is plotted in the location ’step 1’. Figure 6 clearly
shows the reduction of the interpolation after each iteration.
The ODT smoother I is better than the others since it has a
provably error reduction property. The numeric convergence
of the interpolation errors for those smoothers is very clear
from this picture.

The computational cost of those smoothing schemes in each
iteration is listed in the Table 1. In order to compare the
efficiency of the smoothing schemes, we do not include the
computational time for the edge swapping in each iteration.
Table 1 clearly shows that all of those three mesh smoothing
schemes have similar computational cost. Thus it is fair to
say that ODT smoother I is very desirable for isotropic and
uniform mesh generation and adaptation.

Our second example is to use ODT smoothers to generate



Figure 6: Error comparison of Laplacian smoother,
CVT smoother I and ODT smoother I

an anisotropic mesh. We setf(x, y) = 10x2 + y2 to be
an anisotropic function. The optimal mesh under the Hes-
sian matrix off should be long and thin vertically. We
also include the edge swapping. In Figure 7 we list several
meshes after different iterations. Since the desirable mesh is
anisotropic, the number of boundary points on the vertical
edges should be much less than that of points on the hori-
zontal edges. Therefore we free the boundary points except
four corner points. From those pictures, it is clear that some
points are projected to the boundary and some are moved
into the square. We also plot the interpolation error in the
Figure 8. Since the local mesh smoothing is a Gauss-Seidel
like algorithm, we see the Gauss-Seidel type convergence
result for those mesh smoothing schemes; see Figure 6 and
8. An ongoing project is to develop a multigrid-like mesh
smoothing schemes. It is essentially a multilevel constraint
nonlinear optimization problem which is well studied in the
literature( see, for example, Tai and Xu [34]).

The third example is to show a successful application of the
ODT smoother II in the anisotropic mesh generation. The
function we approximate is

f(x, y) = e−( r−0.5
ε

)2 + 0.5r2

wherer2 = (x+0.1)2+(y+0.1)2 andε = 10−3. This func-
tion changes dramatically at theε neighborhood ofr = 0.5.
We use offset(x + 0.1, y + 0.1) to avoid the non-smoothing
Hessian matrix at(0, 0) and quadratic function0.5r2 to en-
sure that Hessian matrix is not singular whenr is far away
from the circle so that we can focus our attention on the in-
terior layer. We use our local refinement, edge swapping
and ODT smoother II to improve the mesh. Here we present
several pictures of our meshes. For the optimality of the
Lp norm of the interpolation error, see [4] for details. We
have applied the mesh adaptation strategies based on ODTs
in solving partial differential equations, especially for the
anisotropic problems; see our recent work [9].

Step Laplacian CVT I ODT I
1 0.19 0.18 0.20
2 0.15 0.16 0.16
3 0.15 0.16 0.16
4 0.15 0.16 0.15
5 0.15 0.16 0.17
6 0.15 0.15 0.16
7 0.15 0.15 0.16
8 0.16 0.16 0.15
9 0.15 0.17 0.16
10 0.13 0.16 0.17

Table 1: Computational cost comparison of Laplacian
smoother, CVT smoother I and ODT smoother I

(a) Original mesh (b) Mesh after 1 iteration

(c) Mesh after 5 iterations (d) Mesh after 20 iterations

Figure 7: Anisotropic meshes obtained by ODT
smoother I



Figure 8: Interpolation of the second example

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 9: An anisotropic mesh and its details

6. CONCLUDING REMARKS AND
FUTURE WORK

In this paper, we have developed several mesh smoothing
schemes using optimal Delaunay triangulations as a frame-
work. The proposed mesh smoothers are designed to reduce
the interpolation error. Our error estimates of the interpola-
tion error ensures that the optimization of the interpolation
error aims to equidistribute the edge length under some met-
ric related the Hessian matrix of the approximated function.
Since theLp norm (p <∞) is somehow an average norm,
we can not promise that the reduction of the interpolation
error will improve the geometric qualities, for example the
minimal angle. However, from the function approximation
point of view, the minimal angle condition is not necessary
if we measure the interpolation error inLp norm.

We presented two formulations of the interpolation error.
The identity (5) in Theorem 1 seems to be new in the lit-
erature and shows the close relation to the functional used
in the centroid Voronoi tessellations. We also presented a
conjecture about the duality between the ODT and the CVT
.

The mesh smoothing schemes proposed in this paper have a
strong mathematical background. In the isotropic case, the
error-based mesh quality is guaranteed to be improved while
the computational cost is as low as that of Laplacian smooth-
ing. Laplacian smoothing can be mathematically justified
under this framework. Another advantage of our approach is
the unification of the isotropic and anisotropic mesh adap-
tations. By choosing anisotropic function or metric, our
smoothing schemes can be used to generate or improve the
anisotropic mesh.

Although the formulation of our mesh smoothing schemes
hold in any spatial dimension, the numerical experiments,
so far, are restricted in two dimensional triangulations. The
three dimensional case will be investigated later.
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